Slide Seminar Spanish Society of Pathology

John R. Goldblum, M.D.

Chairman, Department of Anatomic Pathology
Cleveland Clinic
Professor of Pathology
Cleveland Clinic Lerner College of Medicine

1921 – Original Clinic Building (still in use today)

2011 - Lou Ruvo Center for Brain Health - Nevada

Case History

12-year-old male with a 3.5-cm soft tissue mass of the left forearm

Ancillary Studies

AE1/AE3 -

Desmin + (focal)

CD99 + (focal)

EMA -

S100 protein -

SMA -

EWS FISH +

Case Diagnosis

Angiomatoid (malignant) Fibrous Histiocytoma

Fibrohistiocytic Tumors

"best used as a descriptive term with no histogenetic implications, to encompass a heterogeneous group of tumors that share histologic similarities."

Fibrohistiocytic Tumors Benign

- Benign fibrous histiocytoma
- Juvenile xanthogranuloma
- Reticulohistiocytoma
- Xanthoma

Fibrohistiocytic Tumors Malignant

- Storiform-pleomorphic
- Myxoid
- Giant cell

Inflammatory

Undifferentiated pleomorphic sarcoma

Fibrohistiocytic Tumors Low Malignant Potential

- Atypical fibroxanthoma
- DFSP / Bednar tumor
- Giant cell fibroblastoma
- Plexiform fibrohistiocytic tumor
- Angiomatoid fibrous histiocytoma
- Giant cell tumor of soft tissue

Angiomatoid Fibrous Histiocytoma

Majority of patients < 20 years

Majority located on extremities

Slow-growing subcutaneous mass

Fever, weight loss, anemia

AFH: Immunophenotype

•	Desmin	50%

• EMA 50%

• CD99 45%

• CD68 30%

• MSA/SMA <15%

S100 protein

• AE1/AE3 -

AFH: Genetics

Genetic Characterization of Angiomatoid Fibrous Histiocytoma Identifies Fusion of the *FUS* and *ATF-1* Genes Induced by a Chromosomal Translocation Involving Bands 12q13 and 16p11

Brenda L. Waters, Ioannis Panagopoulos, and Elizabeth F. Allen

ABSTRACT: This case report documents the first karyotypic, fluorescence in situ hybridization, and genetic analysis of an angiomatoid fibrous histiocytoma that arose and recurred in the arm of a 5.5-year-old girl. Complex rearrangements between chromosomes 2, 12, 16, and 17 were noted, as well as deletion in the long arm of chromosome 11. Flow cytometry revealed a normal cell population. The t(12;16) site was further investigated using reverse transcriptase-polymerase chain reaction. We found that the FUS (also known as TLS) gene from 16p11 combined with the ATF-1 gene from 12q13 to generate a chimeric FUS/ATF-1. The FUS gene is rearranged in the t(12;16)(q13;p11) that characterizes myxoid liposarcoma and in acute myeloid leukemia with t(16;21)(p11;q22), while the ATF-1 gene is rearranged in the t(12;22)(q13;q12) found recurrently in clear cell sarcomas (malignant melanoma of soft parts). Thus, the FUS/ATF-1 gene in angiomatoid fibrous histiocytoma is predicted to code for a protein that is very similar to the chimeric EWS/ATF-1 found in clear cell sarcoma. © 2000 Elsevier Science Inc. All rights reserved.

AFH: Genetics

GENES, CHROMOSOMES & CANCER 44:97-102 (2005)

BRIEF COMMUNICATION

Fusion of the EWSR I and ATF I Genes Without Expression of the MITF-M Transcript in Angiomatoid Fibrous Histiocytoma

Karolin Hansén Hallor, ^{1*} Fredrik Mertens, ¹ Yuesheng Jin, ¹ Jeanne M. Meis-Kindblom, ² Lars-Gunnar Kindblom, ² Mikael Behrendtz, ³ Anders Kalén, ⁴ Nils Mandahl, ¹ and Ioannis Panagopoulos ¹

Department of Clinical Genetics, University Hospital, Lund, Sweden

²Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden

³Department of Pediatrics, University Hospital, Linköping, Sweden

⁴Department of Orthopedics, University Hospital, Linköping, Sweden

AFH: Genetics

EWSR1 rearrangement

Oliveira		12/24 (50%)
• EWSR1-CREB1	7	
• EWSR1-ATF1	3	
• EWSR1-alternate	2	
• FUS-ATF1	1	
Tanas		13/17 (86%)

EWS (22q12) - Break Apart Probe

Angiomatoid Fibrous Histiocytoma

<u>Author</u>	Recurrence	Metastasis	<u>Death</u>
Enzinger (1979)	46%	21%	13%
Costa (1990)	12%	5%	1%
Fanburg-Smith (199	9) 2%	1%	0%

Case History

15-year-old boy with a deeply situated
 4.6 cm mass of the calf region

Present for at least four years and slowly growing

Ancillary Studies

S100 protein

SMA

Desmin

AE1/AE3

CD34

FUS (FISH)

Diagnosis

Low-Grade Fibromyxoid Sarcoma (Evans' tumor)

Myxoid Soft Tissue Lesions

Benign

- Nodular fasciitis
- Myxoma
 - intramuscular
 - juxta-articular
 - cutaneous
- Nerve sheath tumors
 - neurofibroma
 - neurothekeoma
 - schwannoma

Malignant

- Myxoid liposarcoma
- Myxofibrosarcoma (myxoid MFH)
- Myxoid chondrosarcoma
- Low-grade fibromyxoid sarcoma
- All other sarcomas

Myxoid Soft Tissue Tumors

- Morphology is most useful
 - Cellularity and cellular arrangement
 - Atypia
 - Vascular pattern

Limited use of IHC (S100)

FISH extremely useful

LGFMS

- Originally described by Harry Evans in 1987 (n=2)
 - Both originally diagnosed as benign
 - Both locally recurred and eventually metastasized
 - One patient died from disease
- Follow-up study by Evans in 1993 (n=10)
 - 10 new cases
 - 8/10 diagnosed retrospectively after recurrence / metastasis
 - 7/10 recurred
 - 5/10 metastasized (some late)
 - 4/10 died of disease

LGFMS: 1987 - 2000

- Characteristic bland histology, frequently misdiagnosed as benign
- Paradoxically aggressive behavior
 - 68% local recurrence
 - 41% metastases
 - 18% died of disease
- Some cases with increased cellularity and atypia
- "The important feature of this neoplasm is that, despite its banal morphology, as many as 50% of cases eventually metastasize and pursue a fatal clinical course over a period of 10-30 years." (CDM Fletcher, 2000)

Hyalinizing Spindle Cell Tumor with Giant Rosettes (HSCT)

- Described by Lane et al in 1997 (19 cases)
 - Giant collagen rosettes with surrounding epithelioid cells
 - Focal areas resembling LGFMS
 - Benign behavior (1 recurrence; no mets)
 - Very few cases subsequently reported, including metastatic cases

LGFMS / HSCT Folpe et al (2000)

N = 73 cases

70/73 initially diagnosed correctly

 3/73 with metastasis, previously diagnosed with "benign" tumors

LGFMS / HSCT

- No sex predilection
- Occur at any age but usually in young adults
- Most common in deep soft tissues of proximal extremities and trunk
- Often large, slowly growing
- May have long pre-biopsy duration

LGFMS / HSCT

MUC4 in LGFMS

LGFMS (all FUS+)		49/49 (100%)
 Marked hypercellularity 	7/7	
 Giant collagen rosettes 	3/3	
 HPC-like vessels 	4/4	
 Focal epithelioid morphology 	3/3	
 Focal marked pleomorphism 	2/2	

MUC4 in LGFMS

<u>Tumor</u>	MUC4+
Cellular myxoma	0/20
Desmoid fibromatosis	0/20
DFSP	0/20
Low-grade MPNST	0/20
Myxofibrosarcoma	0/40
SFT	0/20
Soft tissue perineurioma	0/40
Monophasic synovial sarcoma	6/20 (30%)

LGFMS / HSCT Clinical Behavior

Follow-up: 2-192 mos (mean: 38 mos)

Local recurrence: 5/54 (9%)

• Metastasis: 3/54 (6%)

• Died of disease: 1/54 (2%)

Differential Diagnosis Collagenous Tumors

- Fibromatosis
- Desmoplastic fibroblastoma (collagenous fibroma)
- Neurofibroma
- Perineurioma

Differential Diagnosis Myxoid Tumors

Intramuscular myxoma

 Myxofibrosarcoma ("myxoid MFH")

Intramuscular Myxoma

- Uniformly myxoid
- Hypocellular, bland spindled cells with pyknotic nuclei
- Hypovascular
- Splays apart surrounding skeletal muscle

Myxofibrosarcoma ("Myxoid MFH")

- Multinodular, subcutis, older patients
- More atypical spindled / stellate cells
- Curvilinear thick-walled vessels with perivascular hypercellularity
- Less cellular bland areas; more cellular pleomorphic areas

LGFMS / HSCT

t(7;16)(q33;p11)

CREB3L2/FUS

CREB3L1/FUS

Myxoid/Round Cell Liposarcoma Cytogenetics

Extraskeletal Myxoid Chondrosarcoma Cytogenetics

Myxoid Soft Tissue Tumors

<u>Tumor</u>	<u>Defect</u>	<u>Genes</u>
Myxoma	activating GNAS mutations	

LGFMS/HSCT	t(7;16)(q33;p11)	CREB3L2/FUS
	t(11;16)(p11;p11)	CREB3L1/FUS

MLS/RCLS	t(12;16)(q13;p11)	DDIT3/FUS
	t(12;22)(q13;q12)	DDIT3/EWSR1

LGFMS / HSCT: Summary

- Sarcoma of children and young adults
- Deep soft tissues of proximal extremities
- Deceptively bland histologic features
- Overlapping features between LGFMS/HSCT
- Characteristic molecular alteration t(7;16)
- Treatment: complete excision with tumor-free margins
- Outcome: low rate of recurrence and rare late metastases

Case History

76-year-old male with a history of Barrett's esophagus

Diagnosis

High-grade dysplasia with marked architectural distortion, cannot exclude intramucosal adenocarcinoma, arising in the setting of Barrett's esophagus

Barrett's Esophagus ACG Definition

- A change in the esophageal epithelium of any length that can be
 - recognized at endoscopy
 - confirmed to have intestinal metaplasia by biopsy

Barrett's Esophagus Cancer: Risk Factors

Age (elderly)

Epithelium type (IM)

Sex (males)

Dysplasia

Race (Caucasians) Length

Barrett's Esophagus Dysplasia: Definition

- "Neoplastic epithelium that remains confined within the basement membrane"
 - not synonymous with "atypical"
 - unlikely to spontaneously regress
- Both a marker and the precursor of adenocarcinoma

Barrett's Esophagus Dysplasia

- Negative for dysplasia
- Positive for dysplasia
 - Low-grade
 - High-grade
- Indefinite for dysplasia

Barrett's Esophagus The Problem With Dysplasia

- Sampling error
- Diagnostic interpretation
 - reactive vs dysplastic
 - low-grade vs high-grade
 - high-grade vs intramucosal cancer

Barrett's Esophagus & Dysplasia Rules To Live By

- Dysplasia is recognizable at low magnification (hyperchromatic)
- "Baseline atypia" of Barrett's mucosa (regenerative zone)
- Hold out for cytologic atypia on surface epithelium
- Be wary of active inflammation
- Don't use "indefinite for dysplasia" as a crutch

Barrett's Esophagus & Dysplasia Rules To Live By

- Dysplasia is recognizable at low magnification (hyperchromatic)
- "Baseline atypia" of Barrett's mucosa (regenerative zone)
- Hold out for cytologic atypia on surface epithelium
- Be wary of active inflammation
- Don't use "indefinite for dysplasia" as a crutch

Barrett's Esophagus & Dysplasia Rules To Live By

- Dysplasia is recognizable at low magnification (hyperchromatic)
- "Baseline atypia" of Barrett's mucosa (regenerative zone)
- Hold out for cytologic atypia on surface epithelium
- Be wary of active inflammation
- Don't use "indefinite for dysplasia" as a crutch

High-Grade Dysplasia

Management Options

High-Grade Dysplasia Natural History

1099 patients

79 with HGD without evidence of cancer (34 prevalent/45 incident)

4 with cancer found within one year

75 without detectable cancer within one year

12/75 (16%) developed cancer (mean surveillance: 7.3 yrs)

High-Grade Dysplasia Conclusions

- Patients with HGD without apparent cancer can be safely followed with frequent endoscopic surveillance with biopsies
 - Provided that 1 year of intensive endoscopic searching ("the hunt") fails to detect cancer
- Reserve esophagectomy for those patients with documented cancer

Results

Diagnosis	Kappa	P-value	95% CI	Interobserver agreement
HGD	0.47	<0.001	0.42 – 0.50	Moderate
HGD/MAD	0.21	<0.001	0.17 – 0.25	Fair
IMC	0.30	<0.001	0.27 – 0.35	Fair
SMC	0.14	<0.001	0.10 – 0.18	Poor

Cleveland Clinic

Every life deserves world class care.